

IGBT Transistors 650V/35A FAST IGBT FSII T



#### 650 V Trench and Fieldstop IGBT

| PRODUCT SUMMA       | RY           |              |
|---------------------|--------------|--------------|
| V <sub>CE</sub> (V) | 65           | 0            |
| I <sub>C</sub> (A)  | 160 (TC=25℃) | 80 (TC=100℃) |
| VCE (sat) (V)       | 1.7          | 7            |
| Ісм (А)             | 240          | 0            |



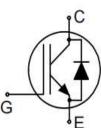
- Very Low VCEsat
- · Low turn-off losses
- High speed switching
- Maximum junction temperature 175°C
- Ultra low gate charge (Q<sub>g</sub>)
- Avalanche energy rated (UIS)

#### **APPLICATIONS**

- Telecommunications
- Server and telecom power supplies Lighting
- High-intensity discharge (HID) - Fluorescent ballast lighting
- Consumer and computing
  - ATX power supplies
- Industrial
  - Welding
- Battery chargers Renewable energy
  - Solar (PV inverters)
- Switch mode power supplies (SMPS)

#### Package pin definition

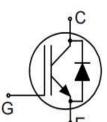
- Pin1 G Gate
- Pin2 C & backside Collector
- Pin3 E Emitter


| PARAMETER                                                         |                         | ess otherwis                                      | SYMBOL                            | LIMIT       | UNIT |
|-------------------------------------------------------------------|-------------------------|---------------------------------------------------|-----------------------------------|-------------|------|
| Collector-Emitter Voltage                                         |                         |                                                   |                                   | 650         |      |
| 0                                                                 |                         |                                                   | V <sub>CE</sub>                   |             | - v  |
| Gate-Emitter Voltage                                              |                         |                                                   | V <sub>GE</sub>                   | ±30         |      |
| Continuous Collector Current (T <sub>.1</sub> = 150 $^{\circ}$ C) | V <sub>GE</sub> at 15 V | T <sub>C</sub> = 25 °C<br>T <sub>C</sub> = 100 °C |                                   | 160         |      |
|                                                                   | VGE at 15 V             | T <sub>C</sub> = 100 °C                           | IC                                | 80          | A    |
| Pulsed Collector Current <sup>a</sup>                             |                         |                                                   | I <sub>CM</sub>                   | 240         | 7    |
| Diode Forward Current <sup>b</sup>                                |                         |                                                   | l <sub>F</sub>                    | 80          | A    |
| Maximum Power Dissipation                                         |                         | T <sub>C</sub> = 25 °C                            | PD                                | 510         | W    |
|                                                                   |                         | T <sub>C</sub> = 100 °C                           |                                   | 260         | w    |
| Operating Junction and Storage Temperature Rang                   | e                       |                                                   | T <sub>J</sub> , T <sub>stg</sub> | -55 to +175 | °C   |
| Short Circuit Withstand Time TC=150°C                             | VGE= 15V, VCE≤ 400V     |                                                   | taa                               | 3           |      |
| Short Circuit Withstand Time TC=100°C                             | VGE= 15V, V             | CE≪330V                                           | tsc –                             | 5           | – μs |
| Soldering Recommendations (Peak Temperature) <sup>c</sup>         | for                     | 10 s                                              |                                   | 260         | °C   |

a. Repetitive rating; pulse width limited by maximum junction temperature.

- b. Current limited by maximum junction temperature.
- c. 1.6 mm from case.



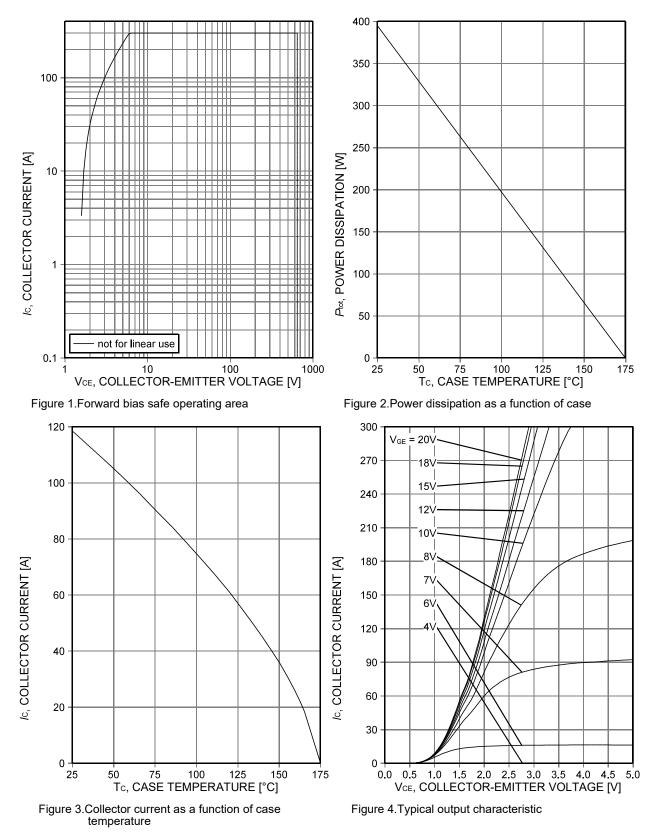

FREE



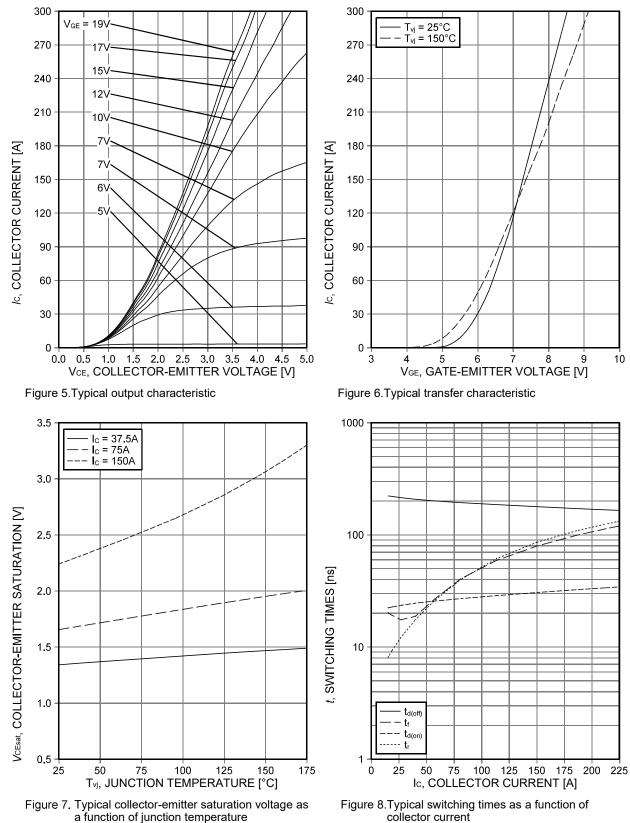


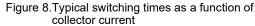
Top View

**TO-247** 

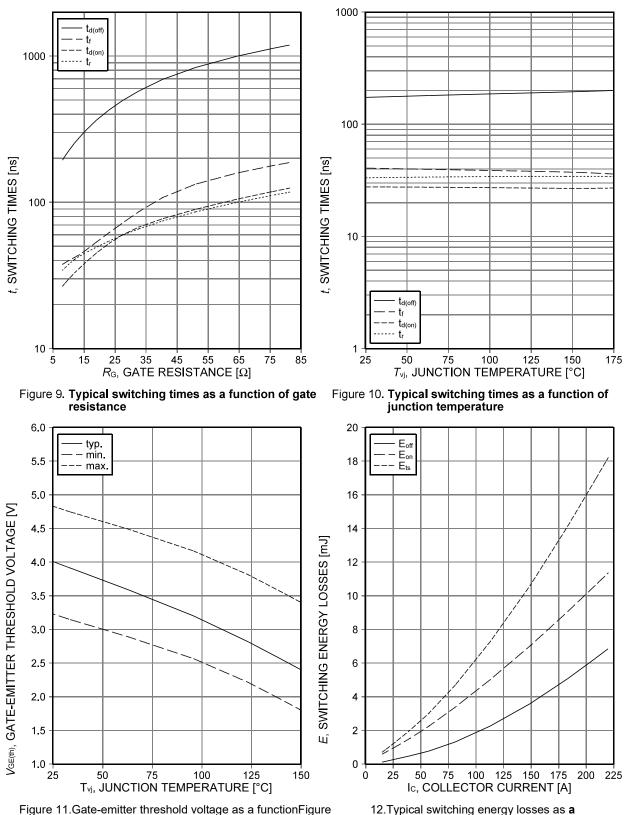






| THERMAL RESISTANCE RA       | FINGS             |      |      |      |
|-----------------------------|-------------------|------|------|------|
| PARAMETER                   | SYMBOL            | TYP. | MAX. | UNIT |
| Maximum Junction-to-Ambient | R <sub>thJA</sub> | -    | 40   | °C/W |
| Maximum Junction-to-Case    | R <sub>thJC</sub> | -    | 0.5  | 0/10 |


| PARAMETER                                 | SYMBOL               | TES                                                          | T CONDITIONS                                                                           | MIN. | TYP. | MAX. | UNIT |
|-------------------------------------------|----------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|------|------|------|------|
| Static                                    | •                    |                                                              |                                                                                        | L    |      |      |      |
|                                           |                      | V <sub>GE</sub> :                                            | = 0 V, I <sub>C</sub> = 250 μΑ                                                         | 650  | -    | -    | v    |
| Collector-Emitter Breakdown Voltage       | BV <sub>CE</sub>     | VGE                                                          | = 0 V, Ic = 1 mA                                                                       | 650  | -    | -    | V    |
| Gate-Source Threshold Voltage (N)         | V <sub>GE(th)</sub>  | V <sub>CE</sub> =                                            | = V <sub>GE</sub> , I <sub>D</sub> = 250 μΑ                                            | 4    | 5    | 6    | V    |
| Zero Gate Voltage Collector Current       |                      | V <sub>CE</sub> = 650 V,                                     | VGE = 0 V,TJ = 25 °C                                                                   | -    | 1    | 20   | μA   |
| Zero Gate voltage Collector Current       | ICES                 | VCE = 650 V,                                                 | Vge = 0 V,Tj = 150 °C                                                                  | -    | 1000 | -    | μA   |
| Gate-Emitter Leakage Current              | I <sub>GES</sub>     | $V_{CE} = 0$                                                 | V, $V_{GS} = \pm 2 \ 0 \ V$                                                            | -    | -    | 100  | nA   |
| Collector-Emitter Saturation Voltage      | V <sub>CE(sat)</sub> | V <sub>GE</sub> = 15 V                                       | I <sub>C</sub> = 80 A                                                                  | -    | 1.8  | 2.1  | V    |
| Forward Transconductance                  | 9 <sub>fs</sub>      | V <sub>CE</sub>                                              | = 20 V, I <sub>C</sub> = 80 A                                                          | -    | 40   | -    | S    |
| Dynamic                                   | •                    | •                                                            |                                                                                        | •    | •    | •    |      |
| Input Capacitance                         | Cies                 | Var                                                          | = 0 V, VCE = 25 V,                                                                     | -    | 8400 | -    | pF   |
| Output Capacitance                        | C <sub>oes</sub>     | ] VGE                                                        | f = 500 KHz                                                                            | -    | 230  | -    |      |
| Reverse Transfer Capacitance              | C <sub>res</sub>     |                                                              | 1 = 000 1112                                                                           | -    | 80   | -    | ]    |
| Turn-on Energy                            | E <sub>on</sub>      | $V_{CE} = 400 \text{ V}$ , $V_{GE} = 0 / 15 \text{V}$ ,      |                                                                                        | -    | 0.51 | -    | nJ   |
| Turn-off Energy                           | Eoff                 | I <sub>C</sub> = 80 A                                        | $A_{g} = 10\Omega$                                                                     | -    | 0.18 | -    |      |
| Total Gate Charge                         | Qg                   |                                                              |                                                                                        | -    | 196  | -    |      |
| Gate-Emitter Charge                       | Q <sub>ge</sub>      | V <sub>GE</sub> = 15 V                                       | I <sub>C</sub> = 80 A, V <sub>CE</sub> = 400 V                                         | -    | 21   | -    | nC   |
| Gate to Collector Charge                  | Q <sub>gc</sub>      |                                                              |                                                                                        | -    | 23   | -    |      |
| Turn-On Delay Time                        | t <sub>d(on)</sub>   |                                                              |                                                                                        | -    | 80   | -    |      |
| Rise Time                                 | t <sub>r</sub>       | $V_{CE} = 400 \text{ V}, \text{ V}_{GE} = 0 / 15 \text{ V},$ |                                                                                        | -    | 75   | -    | - ns |
| Turn-Off Delay Time                       | t <sub>d(off)</sub>  | -<br>I <sub>C</sub> = 80 A, R <sub>g</sub> = 10Ω             |                                                                                        | -    | 195  | -    |      |
| Fall Time                                 | t <sub>f</sub>       |                                                              |                                                                                        | -    | 35   | -    |      |
| Internal emitter inductance measured 5 mm | LE                   |                                                              |                                                                                        | -    | 13   | -    | nH   |
| Diode Characteristics                     |                      |                                                              |                                                                                        |      |      |      |      |
| Diode Forward Current                     | ١ <sub>F</sub>       | IGBT symbol showing the<br>integral reverse junction diode   |                                                                                        | -    | -    | 80   | A    |
| Pulsed Diode Forward Current              | I <sub>FM</sub>      |                                                              |                                                                                        | -    | -    | 240  |      |
| Diode Forward Voltage                     | V <sub>F</sub>       |                                                              | I <sub>F</sub> = 80 A                                                                  | -    | 1.42 | 2.0  | V    |
| Reverse Recovery Time                     | t <sub>rr</sub>      |                                                              |                                                                                        | -    | 90   | -    | ns   |
| Reverse Recovery Charge                   | Q <sub>rr</sub>      |                                                              | ¯ <sub>J</sub> = 25 °C, I <sub>F</sub> = 80 A,<br>t = 200 A/μs, V <sub>B</sub> = 400 V | -    | 0.15 | -    | μC   |
| Reverse Recovery Current                  | I <sub>BBM</sub>     |                                                              | $r = 200 \text{ PV} \mu \text{s}, \text{ v}_{\text{R}} = 400 \text{ v}$                | _    | 15   | -    | A    |



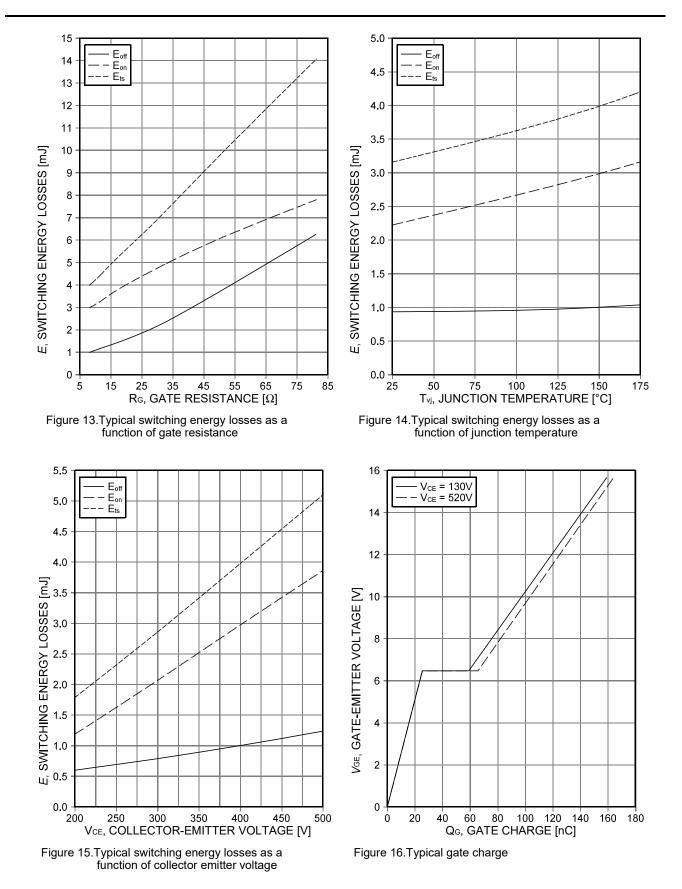




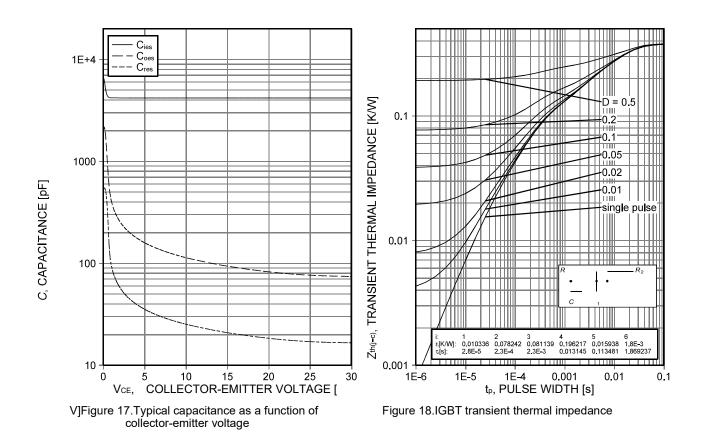






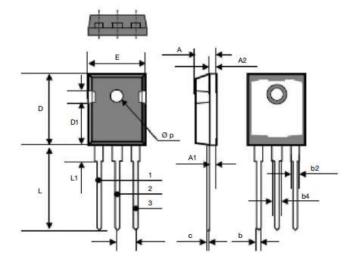




12.Typical switching energy losses as **a** function of collector current


more info: sales@bec.co.uk

of junction temperature












TO-247



| DIM. | MILLIMETERS |       | INCHES    |       |
|------|-------------|-------|-----------|-------|
|      | MIN.        | MAX.  | MIN.      | MAX.  |
| A    | 4.70        | 5.31  | 0.185     | 0.209 |
| A1   | 2.21        | 2.59  | 0.087     | 0.102 |
| A2   | 1.50        | 2.49  | 0.059     | 0.098 |
| b    | 0.99        | 1.40  | 0.039     | 0.055 |
| b2   | 1.65        | 2.41  | 0.065     | 0.095 |
| b4   | 2.59        | 3.43  | 0.102     | 0.135 |
| с    | 0.61 BSC    |       | 0.024 BSC |       |
| D    | 20.80       | 21.46 | 0.819     | 0.845 |
| D1   | 3.68        | 5.49  | 0.145     | 0.216 |
| (e)  | 5.46 BSC    |       | 0.215     | BSC   |
| E    | 15.49       | 16.26 | 0.610     | 0.640 |
| L    | 19.81       | 20.32 | 0.780     | 0.800 |
| L1   | 4.06        | 4.50  | 0.160     | 0.177 |
| Øp   | 3.51        | 3.66  | 0.138     | 0.144 |